这个是NOIP的提高组的题
4804: 树网的核 ![分享至QQ空间](http://210.33.181.162/acmhome/forum/images/ico_qzone.gif)
Description
设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点。
路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和。我们称d(a, b)为a, b两结点间的距离。
D(v, P)=min{d(v, u), u为路径P上的结点}。
树网的直径:树网中最长的路径成为树网的直径。对于给定的树网T,直径不一定是唯一的,但可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。
偏心距ECC(F):树网T中距路径F最远的结点到路径F的距离,即
ECC(F)=max{d(v, F),v∈V}
任务:对于给定的树网T=(V, E, W)和非负整数s,求一个路径F,他是某直径上的一段路径(该路径两端均为树网中的结点),其长度不超过s(可以等于s),使偏心距ECC(F)最小。我们称这个路径为树网T=(V, E, W)的核(Core)。必要时,F可以退化为某个结点。一般来说,在上述定义下,核不一定只有一个,但最小偏心距是唯一的。
下面的图给出了树网的一个实例。图中,A-B与A-C是两条直径,长度均为20。点W是树网的中心,EF边的长度为5。如果指定s=11,则树网的核为路径DEFG(也可以取为路径DEF),偏心距为8。如果指定s=0(或s=1、s=2),则树网的核为结点F,偏心距为12。
Input
包含n行:
第1行,两个正整数n和s,中间用一个空格隔开。其中n为树网结点的个数,s为树网的核的长度的上界。设结点编号以此为1,2,……,n。
从第2行到第n行,每行给出3个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。例如,“2 4 7”表示连接结点2与4的边的长度为7。
所给的数据都是争取的,不必检验。
Output
只有一个非负整数,为指定意义下的最小偏心距。
Sample Input
Sample Output
Hint
样例输入2
8 6
1 3 2
2 3 2
3 4 6
4 5 3
4 6 4
4 7 2
7 8 3
样例输出2
5
Source
看起来是引入了一个新概念,其实还是图论的内容
树的直径是怎么定义的呢?树的直径是指树的最长简单路。求法: 一般采用两遍BFS :先任选一个起点BFS找到最长路的终点,再从终点进行BFS,则第二次BFS找到的最长路即为树的直径;有时候也会树形dp
求一段最长的路径,然后在整个图中的每一个点到该路径上的点的最大长度的最小值
直径最长所以偏心距一定是这两点到端点的最大距离(否则,直径就不为最长)我用floyd跑出最短路,然后在找到最长边,再去枚举这个点就好了啊
#include#include using namespace std;const int inf=0x3f3f3f3f;const int N=305;int d[N][N];int main(){ int n,s; scanf("%d%d",&n,&s); for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) if(i!=j)d[i][j]=inf; for(int i=1; i ma) ma=d[i][j],l=i,r=j; int ans=inf,t=0; for(int i=1; i<=n; i++) if(d[l][i]+d[i][r]==d[l][r]) for(int j=1; j<=n; j++) if(d[l][j]+d[j][r]==d[l][r]) { if(d[i][j]>s)continue; t=max(min(d[i][l],d[j][l]),min(d[r][i],d[r][j])); ans=min(ans,t); } printf("%d",ans); return 0;}